# Common prime factors of two numbers

Given two integer and , the task is to find the common prime divisors of these numbers.**Examples:**

Input:A = 6, B = 12Output:2 3

2 and 3 are the only common prime divisors of 6 and 12Input:A = 4, B = 8Output:2

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the

Essential Maths for CP Courseat a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.

**Naive Approach:** Iterate from **1** to **min(A, B)** and check whether **i** is prime and a factor of both **A** and **B**, if yes then display the number.**Efficient Approach** is to do following:

- Find Greatest Common Divisor (gcd) of the given numbers.
- Find prime factors of the GCD.

**Efficient Approach for multiple queries:** The above solution can be further optimized if there are multiple queries for common factors. The idea is based on Prime Factorization using Sieve O(log n) for multiple queries.

Below is the implementation of the above approach:

## C++

`// C++ implementation of above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `#define MAXN 100001` `bool` `prime[MAXN];` `void` `SieveOfEratosthenes()` `{` ` ` `// Create a boolean array "prime[0..n]" and initialize` ` ` `// all entries it as true. A value in prime[i] will` ` ` `// finally be false if i is Not a prime, else true.` ` ` `memset` `(prime, ` `true` `, ` `sizeof` `(prime));` ` ` `// 0 and 1 are not prime numbers` ` ` `prime[0] = ` `false` `;` ` ` `prime[1] = ` `false` `;` ` ` `for` `(` `int` `p = 2; p * p <= MAXN; p++) {` ` ` `// If prime[p] is not changed, then it is a prime` ` ` `if` `(prime[p] == ` `true` `) {` ` ` `// Update all multiples of p as non-prime` ` ` `for` `(` `int` `i = p * p; i <= MAXN; i += p)` ` ` `prime[i] = ` `false` `;` ` ` `}` ` ` `}` `}` `// Find the common prime divisors` `void` `common_prime(` `int` `a, ` `int` `b)` `{` ` ` `// Get the GCD of the given numbers` ` ` `int` `gcd = __gcd(a, b);` ` ` `// Find the prime divisors of the gcd` ` ` `for` `(` `int` `i = 2; i <= (gcd); i++) {` ` ` `// If i is prime and a divisor of gcd` ` ` `if` `(prime[i] && gcd % i == 0) {` ` ` `cout << i << ` `" "` `;` ` ` `}` ` ` `}` `}` `// Driver code` `int` `main()` `{` ` ` `// Create the Sieve` ` ` `SieveOfEratosthenes();` ` ` `int` `a = 6, b = 12;` ` ` `common_prime(a, b);` ` ` `return` `0;` `}` |

## Java

`//Java implementation of above approach` `class` `GFG {` `static` `final` `int` `MAXN = ` `100001` `;` `static` `boolean` `prime[] = ` `new` `boolean` `[MAXN];` `static` `void` `SieveOfEratosthenes()` `{` ` ` `// Create a boolean array "prime[0..n]" and initialize` ` ` `// all entries it as true. A value in prime[i] will` ` ` `// finally be false if i is Not a prime, else true.` ` ` `for` `(` `int` `i = ` `0` `;i<prime.length;i++)` ` ` `prime[i]=` `true` `;` ` ` `// 0 and 1 are not prime numbers` ` ` `prime[` `0` `] = ` `false` `;` ` ` `prime[` `1` `] = ` `false` `;` ` ` `for` `(` `int` `p = ` `2` `; p * p < MAXN; p++) {` ` ` `// If prime[p] is not changed, then it is a prime` ` ` `if` `(prime[p] == ` `true` `) {` ` ` `// Update all multiples of p as non-prime` ` ` `for` `(` `int` `i = p * p; i < MAXN; i += p)` ` ` `prime[i] = ` `false` `;` ` ` `}` ` ` `}` `}` `// Find the common prime divisors` `static` `void` `common_prime(` `int` `a, ` `int` `b)` `{` ` ` `// Get the GCD of the given numbers` ` ` `int` `gcd = (` `int` `) __gcd(a, b);` ` ` `// Find the prime divisors of the gcd` ` ` `for` `(` `int` `i = ` `2` `; i <= (gcd); i++) {` ` ` `// If i is prime and a divisor of gcd` ` ` `if` `(prime[i] && gcd % i == ` `0` `) {` ` ` `System.out.print(i + ` `" "` `);` ` ` `}` ` ` `}` `}` `static` `long` `__gcd(` `long` `a, ` `long` `b) ` `{ ` ` ` `if` `(a == ` `0` `) ` ` ` `return` `b; ` ` ` `return` `__gcd(b % a, a); ` `}` `// Driver code` ` ` `public` `static` `void` `main(String[] args) {` ` ` `// Create the Sieve` ` ` `SieveOfEratosthenes();` ` ` `int` `a = ` `6` `, b = ` `12` `;` ` ` `common_prime(a, b);` ` ` `}` `}` `/*This code is contributed by 29AjayKumar*/` |

## Python3

`# Python implementation of above approach` `from` `math ` `import` `gcd, sqrt` `# Create a boolean array "prime[0..n]"` `# and initialize all entries it as true.` `# A value in prime[i] will finally be` `# false if i is Not a prime, else true.` `prime ` `=` `[` `True` `] ` `*` `100001` `def` `SieveOfEratosthenes() :` ` ` ` ` `# 0 and 1 are not prime numbers` ` ` `prime[` `0` `] ` `=` `False` ` ` `prime[` `1` `] ` `=` `False` ` ` ` ` `for` `p ` `in` `range` `(` `2` `, ` `int` `(sqrt(` `100001` `)) ` `+` `1` `) :` ` ` `# If prime[p] is not changed,` ` ` `# then it is a prime` ` ` `if` `prime[p] ` `=` `=` `True` `:` ` ` `# Update all multiples of` ` ` `# p as non-prime` ` ` `for` `i ` `in` `range` `(p` `*` `*` `2` `, ` `100001` `, p) :` ` ` `prime[i] ` `=` `False` ` ` `# Find the common prime divisors` `def` `common_prime(a, b) :` ` ` `# Get the GCD of the given numbers` ` ` `__gcd ` `=` `gcd(a, b)` ` ` `# Find the prime divisors of the gcd` ` ` `for` `i ` `in` `range` `(` `2` `, __gcd ` `+` `1` `) :` ` ` ` ` `# If i is prime and a divisor of gcd` ` ` `if` `prime[i] ` `and` `__gcd ` `%` `i ` `=` `=` `0` `:` ` ` `print` `(i, end ` `=` `" "` `)` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `# Create the Sieve` ` ` `SieveOfEratosthenes()` ` ` `a, b ` `=` `6` `, ` `12` ` ` ` ` `common_prime(a, b)` ` ` `# This code is contributed by ANKITRAI1` |

## C#

`//C# implementation of above approach` `using` `System;` `public` `class` `GFG {` ` ` ` ` `static` `bool` `[]prime = ` `new` `bool` `[100001];` ` ` `static` `void` `SieveOfEratosthenes()` ` ` `{` ` ` `// Create a boolean array "prime[0..n]" and initialize` ` ` `// all entries it as true. A value in prime[i] will` ` ` `// finally be false if i is Not a prime, else true.` ` ` `for` `(` `int` `i = 0;i<prime.Length;i++)` ` ` `prime[i]=` `true` `;` ` ` `// 0 and 1 are not prime numbers` ` ` `prime[0] = ` `false` `;` ` ` `prime[1] = ` `false` `;` ` ` `for` `(` `int` `p = 2; p * p < 100001; p++) {` ` ` `// If prime[p] is not changed, then it is a prime` ` ` `if` `(prime[p] == ` `true` `) {` ` ` `// Update all multiples of p as non-prime` ` ` `for` `(` `int` `i = p * p; i < 100001; i += p)` ` ` `prime[i] = ` `false` `;` ` ` `}` ` ` `}` ` ` `}` ` ` `// Find the common prime divisors` ` ` `static` `void` `common_prime(` `int` `a, ` `int` `b)` ` ` `{` ` ` `// Get the GCD of the given numbers` ` ` `int` `gcd = (` `int` `) __gcd(a, b);` ` ` `// Find the prime divisors of the gcd` ` ` `for` `(` `int` `i = 2; i <= (gcd); i++) {` ` ` `// If i is prime and a divisor of gcd` ` ` `if` `(prime[i] && gcd % i == 0) {` ` ` `Console.Write(i + ` `" "` `);` ` ` `}` ` ` `}` ` ` `}` ` ` `static` `long` `__gcd(` `long` `a, ` `long` `b) ` ` ` `{ ` ` ` `if` `(a == 0) ` ` ` `return` `b; ` ` ` `return` `__gcd(b % a, a); ` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main() {` ` ` `// Create the Sieve` ` ` `SieveOfEratosthenes();` ` ` ` ` `int` `a = 6, b = 12;` ` ` ` ` `common_prime(a, b);` ` ` `}` `}` ` ` `/*This code is contributed by 29AjayKumar*/` |

## Javascript

`<script>` `// Javascript program to implement the above approach` `MAXN = parseInt(100001);` `prime = ` `new` `Array(MAXN);` `function` `__gcd(a, b) ` `{ ` ` ` `if` `(a == 0) ` ` ` `return` `b; ` ` ` `return` `__gcd(b % a, a); ` `}` `function` `SieveOfEratosthenes()` `{` ` ` `// Create a boolean array "prime[0..n]" and initialize` ` ` `// all entries it as true. A value in prime[i] will` ` ` `// finally be false if i is Not a prime, else true.` ` ` `prime.fill(` `true` `);` ` ` `// 0 and 1 are not prime numbers` ` ` `prime[0] = ` `false` `;` ` ` `prime[1] = ` `false` `;` ` ` `for` `(` `var` `p = 2; p * p <= MAXN; p++) {` ` ` `// If prime[p] is not changed, then it is a prime` ` ` `if` `(prime[p] == ` `true` `) {` ` ` `// Update all multiples of p as non-prime` ` ` `for` `(` `var` `i = p * p; i <= MAXN; i += p)` ` ` `prime[i] = ` `false` `;` ` ` `}` ` ` `}` `}` `// Find the common prime divisors` `function` `common_prime( a, b)` `{` ` ` `// Get the GCD of the given numbers` ` ` `var` `gcd = __gcd(a, b);` ` ` `// Find the prime divisors of the gcd` ` ` `for` `(` `var` `i = 2; i <= (gcd); i++) {` ` ` `// If i is prime and a divisor of gcd` ` ` `if` `(prime[i] && gcd % i == 0) {` ` ` `document.write( i + ` `" "` `);` ` ` `}` ` ` `}` `}` `SieveOfEratosthenes();` `var` `a = 6, b = 12;` `common_prime(a, b);` `//This code is contributed by SoumikModnal` `</script>` |

**Output:**

2 3